Text Detection for Natural Scene based on MobileNet V2 and U-Net

6,000.00

Text Detection for Natural Scene based on MobileNet V2 and U-Net

100 in stock

SKU: Text Detection for Natural Scene based on MobileNet V2 and U-Net Category:

Description

Text Detection for Natural Scene based on MobileNet V2 and U-Net

The accuracy of text detection from natural scene images based on deep learning is much higher than that of traditional text detection algorithm.

However, most of the text detectors based on deep learning should use large-scale neural network models (such as VGG and ResNet) for improving the accuracy. Because the weight files of these models are very large (VGG is about 500MB and ResNet is about 100MB), they are not suitable for the computationally limited platforms in daily life. Based on the small-scale neural network model named MobileNet V2, and U-Net that is used in semantic segmentation commonly, a text detector for natural scene by using neural network with low complexity is proposed in this paper. The weight file of the designed neural network model is about 16MB, which is suitable for running on mobile platforms.

The experiment result based on the ICDAR 2013 dataset proves that this model has good performance in text detection.

Reviews

There are no reviews yet.

Be the first to review “Text Detection for Natural Scene based on MobileNet V2 and U-Net”

Your email address will not be published. Required fields are marked *

4 + fifteen =

This site uses Akismet to reduce spam. Learn how your comment data is processed.