Fruit Recognition using Deep Learning- Matlab


Huge Price Drop : 50% Discount
Source Code + Demo Video

100 in stock

SKU: Fruit Recognition using Deep Learning Categories: ,


Fruit Recognition using Deep Learning- Matlab

            Fruit recognition using Deep Convolutional Neural Network (CNN) is one of the most promising applications in computer vision. In recent times, deep learning based classifications are making it possible to recognize fruits from images. However, fruit recognition is still a problem for the stacked fruits on weighing scale because of the complexity and similarity. In this project, a fruit recognition system using CNN is proposed. The proposed method uses deep learning techniques for the classification. We have used Fruits-360 dataset for the evaluation purpose. From the dataset, we have established a dataset which contains 17,823 images from 25 different categories. The images are divided into training and test dataset. Moreover, for the classification accuracies, we have used various combinations of hidden layer and epochs for different cases and made a comparison between them. The overall performance losses of the network for different cases also observed. Finally, we have achieved the best test accuracy of 100% and a training accuracy of 99.79%.

For more Image Processing projects ,Click here

 For more Deep Learning Projects Click here

Additional information

Weight 1.000000 kg


There are no reviews yet.

Be the first to review “Fruit Recognition using Deep Learning- Matlab”

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.