Palmprint recognition using Deep Learning


Huge Price Drop : 50% Discount
Source Code + Demo Video

99 in stock

SKU: palmprint recognition Categories: ,



In this project, palmprint recognition requires extraction of palmprint features before classification and recognition, which will affect the recognition rate. To solve this problem, this paper uses the convolutional neural network (CNN) structure Densenet to realize palmprint recognition. First, according to the characteristics of the geometric shape of palmprint, the ROI area of palmprint was cut out. Then the ROI area after processing is taken as input of convolutional neural network. Next the PRelu activation function is used to train the network to select the best learning rate and super parameters. Finally, the palmprint was classified and identified.

Demo Video

Additional information

Weight 1.000000 kg


There are no reviews yet.

Be the first to review “Palmprint recognition using Deep Learning”

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.