
ROS based Autonomous Mobile Robot Navigation
using 2D LiDAR and RGB-D Camera

Sukkpranhachai Gatesichapakorn
Faculty of Engineering

Kasetsart University
Bangkok, Thailand

Jun Takamatsu
Graduate School of Information Science
Nara Institute of Science and Technology

Nara, Japan

Miti Ruchanurucks
Faculty of Engineering

Kasetsart University
Bangkok, Thailand

Regarding other hardware configurations, our mobile robot
was already mounted with 2D LiDAR in position. The robot
was designed to use in some special applications that we
cannot mention here. We further put just a few more equipment
in the mobile robot, with minimal space and power
consumption. According to the design, our mobile robot will be
performing as a moving base for other works with an
individual control system.

This paper presents the complementary ROS navigation
stack that utilizes 2D LiDAR and RGB-D camera with
consideration on limitation regarding the current position of
LiDAR, which is not allowed to alter. The work focuses on
implementing the mobile robot navigation and obstacle
avoidance in a dynamic environment with ROS. Our key
constraint is the robot must be safe to property and human. In
case of unavoidable, the robot will stop and wait. In order to do
so, there is a concern about objects that are not detected by 2D
LiDAR effectively. Hence, we have tried multiple settings and
experiments to observe usability in navigation and avoidance.
We selected two satisfied settings based on an experimental
outcome to contribute in this paper.

Information of our systems is separated into sections.
Please be noted that robot and sensor mounting details, ROS
installation and settings, data preparation are not mentioned.
System and equipment details including camera calibration
reference are present in section II System overview. An
implementation and experiment preparation is in section III
Implementation and Experiment setup. The satisfied systems
for the environment with and without an object that is related
to 2D LiDAR limitation are in section IV Experiment and
result. Section V Conclusion is the conclusion of both systems
including some discussion on common problems.

II. SYSTEM OVERVIEW

A. Robot Operating System in Container

For software, we use ROS as the main platform to
implement a whole system. We present a container software
called Docker (see www.docker.com) for deploying our ROS
system on the robot side. The same Docker image is used for
all robots in our multiple setups. Our Docker images contain
ROS and required packages. Dockerfile is a text file that
contains all commands to automate creation for Docker image.

Abstract—This paper presents an implementation of
autonomous mobile robot with the robot operating system (ROS).
The system utilizes 2D LiDAR and RGB-D camera with ROS 2D
navigation stack, with low power consumption and inexpensive
onboard computer. Safe to property and human is of priority.
Regarding software, we use official ROS packages with minimal
default parameter changes. For hardware, the limitation of
equipment and system setting are among challenges. Our
proposed systems can perform navigation with dynamic obstacle
avoidance capability. The Contribution of this paper is two
system setups of ROS navigation stack are proposed. The first
system is implemented on Raspberry Pi 3 using 2D LiDAR only.
The second system is implemented on Intel NUC using 2D
LiDAR and RGB-D camera. To evaluate the performance,
usability testing was performed in multiple experiments. Our
experiment results show that the robot can avoid objects in their
path, or stop in case of unavoidable. Discussion of problems and
solutions are presented after the experiment results.

Keywords— Autonomous mobile robot; LiDAR; navigation;
RGB-D; ROS

I. INTRODUCTION

Nowadays, an autonomous mobile robot is widely used for
several purposes. Collaboration on various kinds of robots
from different makers or even self-developed robots in the
same ecosystem are trending. The standard and open-source
platform are good choices e.g. Robot Operating System or
ROS [1]. ROS is a widely used platform for robots
implementation [2]-[3]. ROS official packages are adequate in
common robotics task. Furthermore, ROS provides API to
build custom packages or communicate with external systems
or equipment e.g. interfaces and planner [3].

Regarding laser-based mobile robot navigation and
localization, 2D LiDAR is one sensor that is widely used.
However, one disadvantage of 2D LiDAR is it senses using
only a single horizontal scanning line. On the other hand, 3D
LiDAR is available, however more expensive. In this sense,
sensor fusion is one of efficient solutions. Currently, cameras
with depth are in moderate price. RGB-D camera is a camera
that gives us both color image and depth data. OpenNI and
Point Cloud Library (PCL) [4] are among tools for handling
data from the RGB-D camera. To overcome the 2D LiDAR
limitation, our system also utilizes 3D depth point cloud from
PCL as a second source for obstacle detection purpose.

978-1-5386-7774-2/19/$31.00 ©2019 IEEE

2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)

151

We create a simple Dockerfile based on an official image
called “ros:kinetic-robot” with additional sets of packages that
are list below.

 “ros-kinetic-openni2-launch” This is a set of packages
that contains tools for connecting to the RGB-D camera
and handling depth data with PCL in ROS.

 “ros-kinetic-navigation” This is a set of packages that
contains navigation stack in ROS.

 “ros-kinetic-lms1xx” This is a set of packages for
connecting SICK LMS100 series 2D LiDAR with ROS.

 “libaria-dev” This is a required library packages that
contain tools for using our mobile robots with ROS.

Ultimately, we have shared ROS package configurations
directory and launch directory from the host system to the
container dynamically. With this solution, it is possible to use
one image for multiple setups and all different configurations.

B. Equipment and Sensors

For mobile robot body, it is mounted with 2D LiDAR and
RGB-D camera. The LiDAR sensor was calibrated and placed
at 40 cm above the floor. It is ready to run with ROS by
“rosaria”, a supported library. An onboard computer connects
to the robot with an RS232C-USB Converter. The robot and
sensors are listed below.

 “Adept Mobile robot Pioneer 3-DX” This is the base
mobile robot. It comes with a two-wheel differential
driver, wheel encoders and a flat tray on top. The speed
we use is 0.33 m/s with acceleration 0.3 m/s2.

 “SICK LMS100-10000” This is our 2D LiDAR sensor.
Its aperture angle is 270°, sense up to the range of 18 m.
The data rate we use is 50 Hz.

 “ASUS Xtion PRO LIVE” This is our RGB-D camera.
The distance of use is in between 0.8 m and 3.5 m. The
stream resolution we use is 640×480 pixels, 30 frame/s.
The depth point cloud output is 640×480 Z16 at 30 Hz.

Before integrating the RGB-D camera into a navigation
system, we had calibrated it with a checkerboard by a method
in ROS website (see http://wiki.ros.org/camera_calibration).

Our onboard computers are low power consumption and
inexpensive machines. We adopt and compare “Raspberry Pi 3
Model B+” and “Intel® NUC Kit D54250WYK”. They are
supplied by 85 Wh power bank and communicate to the control
center via a wireless network. Our complete equipment setup
with the mobile robot is shown in Fig. 1 and for the wiring
diagram, it is in Fig. 2.

After each device are connected with ROS, the next
preparation is a static map. Before mapping process could be
done in ROS, firstly we have to correct the coordinate
transform for related sensors with the robot. In our system, we
have used “tf2_ros” package with static transform type (see
http://wiki.ros.org/tf2). Doing so transforms LiDAR and
camera coordinate to our robot base coordinate. ROS are help
us in the rest of the kinematic and coordinate transformation.

Fig. 1. The mobile robot with equipment

Fig. 2. Equipment wiring diagram

C. Mapping and localization

In our system, we use a static map for navigation reference.
A target position or way-points we send to the robot are on
static map coordinate. In ROS, they provide a 2D laser-based
SLAM (Simultaneous Localization and Mapping) packages in
various implementation, [5]. We select “slam_gmapping”
packages, an implementation of [6]; not RGB-D SLAM due to
calculation time, [7]. With “slam_gmapping”, 2D map is
created from LiDAR and odometer of a robot. To collect data
with SLAM, we use “teleop_twist_keyboard” package for
control our robot movement via a wireless network.

During navigation, we use “amcl” package for localizing
nodes. The node is implemented by AMCL (Adaptive Monte
Carlo Localization) method (see http://wiki.ros.org/amcl).

III. IMPLEMENTATION AND EXPERIMENT SETUP

This section is realized by two main components. First is an
onboard computer with ROS navigation stack in Docker image
prepared. Second is the control center with ROS that runs way-
point control script. Furthermore, virtualization tools are
utilized for monitoring robot status in experimentation. The
experiment area is indoor environment with a public space and
a narrow way. An obstacle objects including people are
randomly appeared in the robot path. The robot was perform an
obstacle avoidance task in experiment at least 2 times per hour.

Pioneer 3-DX

LMS 100-10000
 LiDAR

RGB-D Camera

RS232C-USB

Onboard
computer

2.3Ah(85Wh)
Power bank

Wiring diagram

RJ-45 (LAN)
Data out

DC In

12V DC DC Out

USB

DB9

2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)

152

A. Way-point control script

This part controls and sends target poses to the mobile
robot. We selected targets from a derived map and transform to
pose by adding orientation. Fig. 3 shows the way-point targets
used in experiment, marked on the map in the order of A to J.

Fig. 3. Way-point position and target order in a map

The flow chart of our control script is shown in Fig. 4. It is
written in Python and interfacing with ROS by “actionlib”
package (see http://wiki.ros.org/actionlib).

Fig. 4. Way-point control script flow chart

B. Visualize and simulation tools

In our experiment, “rviz” is adopted as the 3D visualization
tool (see http://wiki.ros.org/rviz). With rviz, one can see what
is going on (e.g. robot position) or set goal pose for the robot
from a remote place. We used “Gazebo” for simulation
purpose, this software can communicate with ROS. Before
some experiment on the actual mobile robot, we have tested
our system in simulation to observe work-ability and safety.

C. ROS navigation using 2D LiDAR

Regarding our preliminary navigation schemes, we utilize
“costmap_2d” package with static map layer, obstacle layer,
and inflation layer (see http://wiki.ros.org/costmap_2d); 2D
LiDAR for obstacle layer. We serve a map for static map layer
by “map_server” node. For the inflation layer, we use
optimized parameters for our robots e.g. robot footprint.
Furthermore, we optimize parameters in other nodes (planner)
to reduce calculation time and increase performance for the
target system. The system diagram is shown in Fig. 5. This
system focuses on a capability to avoid human while moving.

Fig. 5. Our ROS navigation stack with LiDAR

In addition, we present an implementation and deploy the
system in Raspberry Pi 3 with “Raspbian Stretch” operating
system; low power consumption and inexpensive. The ROS
image and configuration files are deployed with Docker.
Furthermore, the navigation parameters are tuned for
Raspberry Pi. Howsoever, this image and parameters are able
to be deployed in other computers as well. We have tried on
Laptop and Intel NUC with the same setting as Raspberry Pi.
Not surprisingly, both of them are passed all cases in the
experiment outcome on navigation, avoidance and recovery.

D. ROS navigation using 2D LiDAR and RGB-D camera

Regarding our navigation schemes, The advantage of this
system is an ability to avoid objects that are not detected by 2D
LiDAR effectively; able to avoid objects that not below 5 cm.
We utilize “costmap_2d” package in similar ways as the
previous setup, with one additional layer.

Regarding improvement, with two obstacle layer type.
First, utilize 2D LiDAR as an “ObstacleCostmapPlugin”.
Second, utilize RGB-D camera as a “VoxelCostmapPlugin”.
Furthermore, we apply filters on depth data (PCL) before
passing to obstacle layer; downsampling with “voxel_grid” and
noise reduction with “StatisticalOutlierRemoval”. We utilize
“openni2_launch” package for connecting to RGB-D camera
and handling PCL (see http://wiki.ros.org/openni2_launch).
The system diagram is shown in Fig. 6. This system is focused
on a capability to avoid objects and human while moving.

Start

rospy
is running

Get target pose
from way-point list
at index_pointer

End

No

Yes

Is on
target pose

Send goal pose to
MoveBaseGoal

Get return
result

Is
on the way

Is
timeout

No

No

Yes

No

clear_costmaps

Yes

Yes

Update
index_pointer

Yes

Is target
unreachable

No

No

Yes

Pioneer 3-DX LMS100 LiDAR

ROS Navigation in Docker image

Sensors and Robot

ROS navigation with LiDAR

Navigation machine (onboard)

Control machine (Remote site)

Way-point script (rospy)actionlib

ROS Navigation in Docker image

Wireless communication

lms1xxtf2_ros(static) rosaria

movebase amcl

map_server

Local network

2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)

153

Fig. 6. Our ROS navigation stack with LiDAR and RGB-D camera

In addition, we deploy the system in Intel NUC with
“Ubuntu 16.04” operating system; low power consumption and
inexpensive. The navigation parameters are tuned for Intel
NUC. Howsoever, we use the same ROS image for all system
setup. We have tried this setting on Laptop and Raspberry Pi.
The Laptop is passed all cases in experiment. Nevertheless,
Raspberry Pi was unutilized due to the limitation of processing.
An openni2 take over 90% of processing power and produce
depth point cloud only at 0.3 Hz, this outcome is not stratify us.

E. Experiment setup

Our experiment for an autonomous mobile robot is running
with an automate way-point control script at least one hour. We
observe usability by performing a test case during run-time.
Basic test case for all experiment is roughly listed below.

 Navigation: a capability to reach all point in way-point.

 Avoidance: a capability to avoid human or objects.

 Recovery: a capability to continue moving after stop.

We monitoring robot status using rviz, as shown in Fig. 7.
In case of emergency, the system will be stopped immediately.
We check equipment, battery level, network connection, and
test area; Then, we move the robot to a starting point and set an
initial pose before starting the navigation system.

Fig. 7. Visualize robot navigation in rviz

IV. EXPERIMENT AND RESULT

The experiment performs in two environments, by concern
on objects that are not detected by 2D LiDAR effectively.

A. Experiment for LiDAR only

In an experiment, we test with the only object that
detectable by 2D LiDAR; including walking human. The result
shows that our system passes all cases. The additional test is
long-term running. Raspberry Pi is the longest working time
without crashing until we stop at six-hour passed.

B. Experiment for LiDAR and RGB-D camera

In an experiment, we test with an object that high in
between 5 cm to 1 m; included walking human. The result
shows that our system passes all cases. The additional result,
Intel NUC is the longest working time without crashing until
an experiment ends; after the battery for our onboard computer
was used up at four-hour passed.

V. CONCLUSION

Both of the paradigms achieve their goal regarding guiding
the autonomous mobile robot using only a target area as a
destination of navigation without collision. Nevertheless, our
system implementation is based on basic ROS navigation
stack. In any case, during an investigation, depth information
requires high processing time and bandwidth. Furthermore,
network communication delay affects ROS node in machines
differently. At the present time, the robot cannot move in a
backward direction due to some certain safety reasons. Remote
calculation for depths data or even navigation stacks node is
not satisfied due to heavy throughput and transmission delay.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler and A. Y. Ng, "Ros: an open-source robot operating system,"
ICRA workshop on open source software, vol. 3, no. 3.2, pp. 5, 2009.

[2] S. Zaman, W. Slany and G. Steinbauer, "ROS-based mapping,
localization and autonomous navigation using a Pioneer 3-DX robot and
their relevant issues,” 2011 Saudi International Electronics,
Communications and Photonics Conference, Riyadh, 2011, pp. 1-5.

[3] Y. Ochiai, K. Takemura, A. Ikeda, J. Takamatsu and T. Ogasawara,
"Remote control system for multiple mobile robots using touch panel
interface and autonomous mobility," 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp.
3272-3277.

[4] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL),"
2011 IEEE International Conference on Robotics and Automation,
Shanghai, 2011, pp. 1-4.

[5] J. M. Santos, D. Portugal and R. P. Rocha, "An evaluation of 2D SLAM
techniques available in Robot Operating System," 2013 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Linkoping, 2013, pp. 1-6.

[6] G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters," in IEEE
Transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007.

[7] J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers, "A
benchmark for the evaluation of RGB-D SLAM systems," 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, 2012, pp. 573-580.

lms1xx

tf2_ros(static)

rosaria

movebase

openni2_launch

amcl

map_server

Pioneer 3-DX

PCL(filter)

RGB-D camera LMS100 LiDAR

ROS Navigation in Docker image

Sensors and Robot

Navigation machine (onboard)

Control machine (Remote site)

Way-point script (rospy)actionlib

ROS Navigation in Docker image

Wireless communication

Local network

ROS navigation with LiDAR and RGB-D Camera

2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)

154

