LSTM-CNN Architecture for Human Activity Recognition


In this project human activity recognition was done through mobile sensors

100 in stock

SKU: human activity recognition Category:



In this paper, a deep neural network that combines convolutional layers with long short-term memory (LSTM) was proposed. This model could extract activity features automatically and classify them with a few model parameters. LSTM is a variant of the recurrent neural network (RNN), which is more suitable for processing temporal sequences. In the proposed architecture, the raw data collected by mobile sensors was fed into a two-layer LSTM followed by convolutional layers. In addition, a global average pooling layer (GAP) was applied to replace the fully connected layer after convolution for reducing model parameters. Moreover, a batch normalization layer (BN) was added after the GAP layer to speed up the convergence, and obvious results were achieved. The model performance was evaluated on three public datasets (UCI, WISDM, and OPPORTUNITY). Finally, the overall accuracy of the model in the UCI-HAR dataset is 95.78%, in the WISDM dataset is 95.85%, and in the OPPORTUNITY dataset is 92.63%. The results show that the proposed model has higher robustness and better activity detection capability than some of the reported results. It can not only adaptively extract activity features, but also has fewer parameters and higher accuracy.


There are no reviews yet.

Be the first to review “LSTM-CNN Architecture for Human Activity Recognition”

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.