Chicken Meat Freshness Identification using Colors and Textures Feature -Image Processing projects

In stock
SKU
Chicken Meat Freshness Identification -Image Processing projects
Quick Overview
Chicken Meat Freshness Identification using Colors and Textures Feature -Image Processing projects
Call For Price

Secured and trusted checkout with

Chicken Meat Freshness Identification using Colors and Textures Feature -Image Processing projects

This research proposed the identification of chicken freshness level based on its color and texture features. Color Features used are the RGB (Red, Green, and Blue) and HSV (Hue, Saturation, Value) channel histogram value. texture features used are GLCM (Grey Level Co-Occurrence Matrix), Gabor kernel, and HOG (Histogram of Oriented Gradients).

The freshness level of a chicken meat is categorized into three labels, fresh (0-4 hours after slaughtered), medium-fresh (4-6 hours after slaughtered), and not-fresh (more than 6 hours after slaughtered). The experiments will identify the freshness using several classification methods and different camera resolution and magnification.

The highest classification accuracy using SVM (Support Vector Machines) achieves 58,33% with a smartphone camera, 98% with a webcam camera, and 79.1% with a 200 magnification digital microscope.

From the experiment results, we can conclude that using webcam camera with normal resolution have better classification accuracy compared with a 200 magnification digital microscope or standard smartphone camera. It is also shown that SVM is superior compared with other methods tested in this experiments which are Decision Tree and Naive Bayes.

0
Rating:
0% of 100
Write Your Own Review
You're reviewing:Chicken Meat Freshness Identification using Colors and Textures Feature -Image Processing projects
Quote Inquiry Form

Write a descriptive message about what you are inquiring.