Blind Image Blur Estimation via Deep Learning


Huge Price Drop : 50% Discount
Source Code + Demo Video


Platform : Matlab

Delivery : One Working Day

Support : Online Demo ( 2 Hours)

100 in stock

SKU: Blind Image Blur Estimation via Deep Learning Category:



Image blur kernel estimation is critical to blind image deblurring. Most existing approaches exploit handcrafted blur features that are optimized for a certain uniform blur across the image, which is unrealistic in a real blind deconvolution setting, where the blur type is often unknown. To deal with this issue, we aim at identifying the blur type for each input image patch, and then estimating the kernel parameter in this paper. A learning-based method using a pre-trained deep neural network (DNN) and a general regression neural network (GRNN) is proposed to first classify the blur type and then estimate its parameters, taking advantages of both the classification ability of DNN and the regression ability of GRNN. To the best of our knowledge, this is the first time that pre-trained DNN and GRNN have been applied to the problem of blur analysis. First, our method identifies the blur type from a mixed input of image patches corrupted by various blurs with different parameters. To this aim, a supervised DNN is trained to project the input samples into a discriminative feature space, in which the blur type can be easily classified. Then, for each blur type, the proposed GRNN estimates the blur parameters with very high accuracy. Experiments demonstrate the effectiveness of the proposed method in several tasks with better or competitive results compared with the state of the art on two standard image data sets, i.e., the Berkeley segmentation data set and the Pascal VOC 2007 data set. In addition, blur region segmentation and deblurring on a number of real photographs show that our method outperforms the previous techniques even for non-uniformly blurred images.


  • Kernel Density Process
  • Image de-noising in spatial domain
  • Support Vector Machine (SVM)
  • NN ,CNN


  • Computational complexity is more than the other methods.
  • Fourier transform method fails to give more details about input image
  • Edge information


  • Deep Belief network
  • Deep neutral network
  • General Regression Neural Network (GRNN)


  • Noise reduction
  • blind blur parameter estimation from a single (either locally or globally) blurred image without doing any deblurring
  • improved handcrafted features for blur detection


Blind Image blur estimation


  • MATLAB 7.5 and above versions


  • satellite remote sensing
  • Military Application
  • Security Process on Toll Gate (License Plate Verification) Application
  • Computer Vision
  • Medical Application
  • Photoshop Application


Blind Image blur estimation

Blind Image blur estimation

Blind Image blur estimation

Blind Image blur estimation

Blind Image blur estimation

Blind Image blur estimation

Additional information

Weight 0.000000 kg


There are no reviews yet.

Be the first to review “Blind Image Blur Estimation via Deep Learning”

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.